

A Guide To Distance-Driven User Interfaces

Christian Lambeck, Jan Wojdziak, Ria Elliger

Technische Universität Dresden, Department of Computer Science, Institut of Software- and Multimedia Technology, Dresden, Germany

COST 2101 Final Meeting / February / 2011 / Dresden

Content

[1] Introduction

[2] Distance-Driven Interfaces

[3] Applications

[4] Guide

[5] Scenario

[6] Future Work

[1] Introduction

Scope

- Graphical User Interfaces and Interaction Techniques
- Integration of characteristics of humans into image process
- Assistance of the user in perceiving information

Motivation:

User has to interact with a system by situation- and context-adapted interfaces to accomplish their tasks.

Aim:

User-centered visualisations

Approach:

extension of explicit and direct interactions (e.g. keyboard, mouse,...) by implicit, presence-aware interactions (e.g. position, orientation, age)

[2] Distance-Driven Interfaces

Zones, depending on the display distance

Ambient Zone: Notification Zone Interactive Zone:

Out of scope - Visualization of general information In scope - Visualization of individual information In scope - Interaction with the system

- Zones depends on viewing direction and body orientation (Ambient Display and Implicit Interaction)
- Depending on the distance, interaction using spatial gestures (Subtle Interaction)
- Interaction using gestures on the screen (Personal Interaction)

[3] Applications

Challenges in the Design of Distance-Driven Interfaces

- almost unlimited fields of application(s) that diverse in their requirements
- Concrete implementations are very specific in terms of the domain and the users
- "Best Practice" Approaches exist in subdomains , e.g. human tracking, distance measurment ([3],[4]), an enclosing development approach is missing.
- From developers point of view, sufficient and comprehensive considerations on all relevant aspects are needed.

Enclosing, extensible and modular approach is required which is important for design, reuse and maintenance

[4] Guide

Scenario Categorization

requirements

► user detection

- Conditions of the application context

(Human) Tracking

- Tracking and identification of users

Devices & Hardware

- Technologies for distance measurement

Algorithms

- Calculation of the observer distance

Adaption of Presentations

- Adaption of interface layout depending on the distance

distance computation

► UI preparation

Fig.4: Extensible guide with modular components as meta-concept for methods and techniques in the field of distance-based visualisations.

[5] Scenario

Fig.5: presentation adaption of the healthcare patient monitore

_

Healthcare - patient monitoring

Scenario Categorization

category	attribute
areal structure	interior / room
accuracy	high
amount of observers	multiple user
consistency of observers	constant
user profile	anonymous
dimensions of display	low / medium
minimal distance	acceptable

Tracking, Device, Algorithm

tracking	hardware	method
face detection	webcams	disparity

Presentation Adaption

adaption	distance	visible information
remote level	large	values displayed as colors
value level	middle	exact values displayed
curve level	short	curve, values and information

[6] Conclusion and Future Work

Conclusion

- First step to an enclosing guide for developing distance-driven user interfaces

Future Work

- Completion of characteristics especially of scenarios, devices, algorithms, adaptations,...
- Integration of additional modules:
 - Authentication for security scenarios, user preferences...
- Visual Workload Balance [5] to keep complexity constant through all distances (in complexity and content)
- Specifications based on the guide saved and provided as templates

...thank you for your attention...

Contact:

christian.lambeck@tu-dresden.de jan.wojdziak@tu-dresden.de ria.elliger@mailbox.tu-dresden.de

Europäischer Sozialfonds

Panel 9

Europa fördert Sachsen.

This publication is supported by the European Union and the Free State of Saxony, funded by the European Social Fund (ESF)

[A] References

- [1] Vogel, Balakrishnan: Interactive Public Ambient Displays: Transitioning from Implicit to Explicit, Public to Personal, Interaction with Multiple Users, Proceedings of the 17th annual ACM symposium on User interface software and technology, pp. 137-146, ACM, 2004
- [2] Streitz, Rocker, Prante, Stenzel, Alphen: Situated interaction with ambient information: Facilitating awareness and communication in ubiquitous work environments, Human-Centred Computing: Cognitive, Social, and Ergonomic Aspects, pp. 133-137, Lawrence Erlbaum, 2003
- [3] Amann, Bosch, Myllyla, Rioux: Laser ranging: a critical review of usual techniques for distance measurement, Society of Photo-Optical Instrumentation Engineers (SPIE), Bellingham/Washington, 2000
- [4] Bardram, Kjaer, Pedersen: Context-Aware User Authentication Supporting Proximity-Based Login in Pervasive Computing, LNCS 2864, pp. 107-123, Berlin/ Heidelberg, 2003
- [5] Embrey, Blackett, Marsden, Peachey: Development of a Human Cognitive Workload Assessment Tool, MCA Final Report, Human Reliability Associates, Dalton Lancashire, 2006